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On Achieving Cost-Effective Adaptive Cloud
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Abstract— Cloud gaming has become a new trend for gamers to
access high-end video games. By rendering games in the remote
cloud and streaming video scenes to the users, games can be
played anywhere, anytime, on any device (e.g., smartphones,
tablets, or personal computers). In this paper, we address the
problem of achieving cost-effective adaptive cloud gaming in
geo-distributed data centers from the perspective of cloud gaming
service providers (CGSPs). Unlike previous work, we consider
a cloud gaming system supported with the adaptive streaming
technology. Our purpose is to minimize the overall service cost
for CGSPs, by adaptively adjusting the selection of data centers,
virtual machine allocation and video bitrate configuration for
each user. Meanwhile, we also need to ensure good-enough quality
of experience (QoE) for gamers. To this objective, we formulate
the problem into a constrained stochastic optimization problem,
and apply the Lyapunov optimization theory to drive the
corresponding online strategy with provable upper bounds. Due
to the diverse QoE requirements of video games, we also take the
difference among game genres into account during the algorithm
design. Finally, we conduct extensive trace-driven simulations to
evaluate the effectiveness of our algorithm and our results show
that our proposed algorithm can achieve significant gain over
other alternative approaches.

Index Terms— Adaptive streaming, cloud gaming, data centers,
Lyapunov optimization.

I. INTRODUCTION

IN RECENT years, a new type of cloud service called
cloud gaming is becoming more and more popular in the

gaming industry. The great potential of cloud gaming has been
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evidenced by its rapidly expanding scale, and it has attracted
remarkable attention from both industry and academia. It is
predicted that the overall revenue of the global video games
will reach $64 billion in 2017, with online download and
stream sales set to capture more than 60% of the market.
In addition, the market of cloud gaming is expected to grow
ninefolds by 2017, reaching $8 billion sales [1]. Some well-
known cloud gaming platforms include OnLive [2], Gaikai [3],
G-Cluster [4], and StreamMyGame [5].

Cloud gaming (also known as gaming on demand) is a
radically different type of online gaming services, in which
games are stored, synchronized, and rendered in remote cloud
servers and delivered to players using streaming technology.
Cloud gaming has become a new trend to play high-end
3-D video games, and makes gaming easier and more afford-
able for users. Game players are relieved from downloading
or installing the original game software, and there is also no
need for players to constantly upgrade their hardware. Instead,
the cloud will take over all the computation-intensive tasks and
stream the video of the gameplay to the player. Users can inter-
act with the game in the cloud by sending control signals (e.g.,
key strokes and mouse clicks) to the remote gaming servers.

Existing cloud gaming service providers (CGSPs) generally
rely on a set of geographically distributed data centers to
deliver their services. Upon receiving a user request, the cloud
gaming platform will redirect the user request to a particular
data center according to certain polices (e.g., proximity and
load balancing), and launch a dedicated gaming server or a
virtual machine (VM) with specialized graphic hardware to run
the requested game. The gaming server (or VM) is responsible
for rendering and then streaming encoded game frames back
to the user via the broadband network.

However, it is very difficult to design a cost-effective
cloud gaming platform that can provide users with high
quality of experience (QoE). The challenges are multifolds
as follows. First, compared with traditional video-on-demand
service, cloud gaming is more interactive and delay sensitive.
According to the measurement work in [6], online game
players are pretty impatient and sensitive to the interaction
delay during game playing. Thus, it is important for a CGSP to
adjust resource provisioning for users dynamically to meet the
delay constraint. Second, different game genres have different
requirements on interaction delay. As pointed out in [7], such
requirements on interaction delay vary significantly across
different game genres. For example, the increase of inter-
action delay is intolerable for the first-person shooter (FPS)
games, while players of the war strategy games will not
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perceive obvious difference for the same interaction delay.
Therefore, the decision on resource provisioning should also
take the difference among game genres into account. Third, the
heterogeneity of user devices (e.g., smartphones, pads, TVs,
and tablets) demands adaptive streaming of video games.
There exists significant diversity among user devices on the
screen resolution, network bandwidth, computation capacity,
and so on. Thus, the cloud gaming platform should be able
to tune the video bitrate dynamically for each user and
adapt to the changes of user demand and network conditions.
Fourth, the delivery of cloud gaming services incurs signif-
icant monetary cost, such as bandwidth cost for game video
streaming, rental cost for allocated VMs, and so on. To survive
in the market competition, the CGSP must minimize its service
cost as much as possible, in addition to providing good
user QoE.

In this paper, we attempt to address the above challenges
from the perspective of CGSPs. Our design objective is
to achieve cost-effective adaptive cloud gaming (CACG),
in which the service cost of CGSPs can be minimized as much
as possible, while still ensuring good-enough QoE for game
players. Toward this, we consider the adaptation of resource
provisioning from three different angles: 1) adaptive data
center selection; 2) adaptive VM allocation; and 3) adaptive
video bitrate configuration. Mathematically, we formulate the
objective problem into a constrained stochastic optimization
problem, and exploit Lyapunov optimization theory [8] to
solve the transformed problem. Our proposed algorithm is
an online algorithm that can optimize data center selection,
resource provisioning, and video bitrate adaptation jointly. Our
algorithm can also approach the optimality with a provable
performance bound. In summary, our main contributions are
listed as follows.

1) We consider the problem of delivering CACG from
the perspective of CGSPs, and aim at cutting down
the service cost of CGSPs, by optimizing data center
selection, VM allocation, and video bitrate adaptation
jointly. In addition, we also take the difference among
game genres into account, and our algorithm can meet
the QoE requirements of different game genres.

2) We formulate the problem into a constrained stochastic
optimization problem and utilize the Lyapunov optimiza-
tion theory to solve the problem. We design a joint user
dispatching and resource allocation algorithm, called
CACG, for the CGSPs. Our proposed online algorithm
can achieve adaptive resource allocation for each user
and minimize the service cost for CGSPs. Meanwhile,
we can also ensure good-enough QoE for game players.
Unlike heuristic algorithms, our algorithm can approach
the optimality with an explicitly provable performance
upper bound.

3) We perform extensive trace-driven simulations to verify
the effectiveness of our propose CACG algorithm in
the practical settings. Our simulation results shows that,
compared with other alternatives, CACG can save at
least 25% of service cost, while providing even better
QoE for game players.

The rest of this paper is organized as follows. Section II
reviews previous work in the area of cloud gaming. Section III
provides the details of our system model and problem
formulation. Section IV describes the design of our proposed
online algorithms. In Section V, we evaluate the effectiveness
of our proposed algorithm by simulation. Finally, Section VI
concludes the whole paper and discusses some future work.

II. RELATED WORK

In spite that cloud gaming is a relatively new paradigm
to deliver games over the Internet, it has received significant
attention from industry and academia in recent years.

Quite a few measurement studies have been conducted
to better understand the architecture and performance of
existing cloud gaming systems. Chen et al. [10] measured
the response delay of two leading cloud gaming platforms,
namely, OnLive and StreamMyGame. They proposed a novel
delay measurement method using hooking mechanism in
Windows to inject the instrumentation code. Choy et al. [11]
demonstrated through a large-scale measurement study that
the existing cloud infrastructure is hard to meet the strict
latency requirements of end users. Manzano et al. [12], [13]
measured traffic characteristics of cloud gaming, analyzed
the differences in network traffic across different games, and
also described the detailed protocols for player assignments
in OnLive.

To understand the impact of different game genres on the
user experience for cloud gaming, Quax et al. [7] performed
a qualitative comparison of four different game genres using
a combined objective and subjective approaches, and showed
that games that require intense interactions (e.g., action and
racing games) are more sensitive to the delay compared with
puzzle and strategy games. Lee et al. [14] pointed out that the
same latency may have very different impacts on the quality
of gaming experience for different games, depending on their
delay sensitivity. They also developed a model to predict the
real-time strictness of a game based on the rate of player inputs
and the changes of game screen. Suznjevic et al. [15] analyzed
network traffic generated by various types of cloud games,
and examined the relationship between traffic characteristics,
video patterns, and player inputs.

As cloud gaming relies on the cloud platform for
service delivery, another thread of research focused on the
problem of dynamic cloud resource provisioning. Unlike
the conventional cloud-assisted video streaming [16]–[20],
cloud gaming is inherently a latency-sensitive service, which
makes the problem of resource provisioning more challenging.
Marzolla et al. [21] considered the resource provisioning
problem in massively multiplayer online games, which is quite
different from the scenario in cloud gaming. Duong et al. [22]
proposed a QoS-aware provisioning strategy to maximize
the revenue of the service provider by satisfying predefined
QoS requirements, but they only studied resource allocation in
a single data center. Wu et al. [23] proposed an online control
algorithm to cut down the provisioning cost while still ensuring
the user QoE requirements, particularly the waiting time of
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Fig. 1. Typical architecture of a cloud gaming platform.

game players in the queue. Finkel et al. [24] considered the
case in which each cloud server can only host a subset of game
replicas, and designed efficient game distribution strategies to
reduce disk space requirements significantly. Hong et al. [25]
studied the VM placement problem in the cloud gaming
platform, however, their work did not take the video bitrate
adaptation into account.

This paper differs from previous work in the following
aspects: first, instead of considering only single data center,
we studied the scenario of request dispatching and resource
provisioning among multiple geo-distributed data centers
jointly. Second, we considered the integration of adaptive
video streaming with cloud gaming, thus game players are
able to adaptively configure their video bitrate based on the
current network condition. Third, we take the impact of game
genres into consideration, therefore, our proposed algorithm
is applicable for different games with various latency and
bitrate requirements. Finally, our algorithm can achieve a
good-enough tradeoff between provisioning cost and user
QoE with explicitly provable performance bounds. It can
significantly reduce the provisioning cost of CGSPs without
sacrificing user QoE.

III. PROBLEM FORMULATION

A. System Model

In this section, we consider a typical cloud gaming platform,
as shown in Fig. 1.

Users can play cloud games with different hardware devices
(e.g., laptops, smartphones, and tablets). To improve the QoE
for users in different regions, the CGSP normally deploys its
service on multiple geographically distributed data centers.
In the figure, portal servers are the entry point for gamers to
access the cloud gaming platform. The portal server is respon-
sible for user authentication, data center selection, video bitrate
selection, and VM configuration. Physically, the portal servers
can be a set of cluster servers located in multiple locations.
When a user accesses the cloud gaming platform, he should

first connect to the portal server and authenticate himself, and
then select the game to play. After the portal server learns
the bandwidth condition of a user, it then redirects the user
request to a proper data center. Based on the results obtained
from bandwidth test, the portal server determines the bitrate to
encode the game frames. Later a gaming server (e.g., a VM) is
created and properly configured in the selected data center. The
user can then connect with the gaming server and start game
playing. When the game has been launched, the generated
video game traffic flows between the user and the gaming
server directly, instead of going through the portal server. The
portal server only needs to handle control data traffic. Thus, the
portal server will not become a bottleneck of the whole system.

Assume that the CGSP deploys its infrastructure
on K geo-distributed data centers, denoted by
DC = {DC1, DC2, . . . , DCK }. In each data center,
we suppose that there are D different available
VM configurations (e.g., CPU, GPU, and memory),
represented as C = {C1, C2, . . . , CD}. To play a game, each
user should be allocated with one properly configured VM.
The CGSP can scale up or down the cloud resources (e.g., the
number of VMs and the amount of bandwidth) provisioned
in each data center to meet the dynamic user demand.

We also assume that each data center stores a replica of
all the supported games, so that a user can directly play any
game from any data center. By enabling adaptive streaming
on gaming servers [26], the game scenes can be encoded into
M different bitrates, denoted by {B( j), j = 1, . . . , M}. In our
model, the time is divided into a series of time slots and each
time slot lasts for a period of τ . To facilitate our presentation,
we define an indicator Xt (i, j) to indicate whether a user i
receives a video stream with the j th bitrate at time slot t

X t (i, j) = 1 {user i receives a stream with the j th bitrate}.
In general, a CGSP will provide a wide range of video

games in different categories (e.g., action adventure, FPS,
and war strategy). Each category of games has different
QoE requirements on bandwidth and delay. According to the
category of games played by users, we divide all users into
L different groups, denoted as G = {G1, G2, . . . , GL}. Users
in the same group play games in the same or similar categories
with similar QoE requirements. For example, a user who is
playing action adventure games may need a higher bitrate
to achieve smooth video quality, while the basic QoE of a
war strategy game player can be satisfied with a much lower
bitrate. We define a function G(i) to indicate the index of
the group that a user i belongs to. Let A(l) be the basic
bitrate required by users in the group l. To ensure a basic
game experience, a user i should request a video stream with
a bitrate no less than A(G(i)). To guarantee that the actual
video bitrate that a user i receives is no less than the basic
bitrate requirement, we must ensure that

M∑

j=1

B( j) · Xt (i, j) ≥ A(G(i)) (1)

for each user i , where A(G(i)) is the basic bitrate that a user i
requires to get a comfortable experience, and the left-hand side
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of the inequality is the actual bitrate allocated to the user i by
the system.

B. Delay Model

The QoE of game players is sensitive to interaction delay
of cloud gaming. In [10], interaction delay is defined as the
lag between the time the client sends a player’s command to
the server and the time the generated video frame is decoded
and presented on the screen. Interaction delay mainly contains
three components: 1) network delay (at the network side);
2) processing delay (at the server side); and 3) playout delay
(at the client side). Network delay is usually referred to as
the network round-trip time, which can be measured by tools
such as Ping and King [27]. Processing delay is the difference
between the time the server receives a user’s command and the
time the server responds with a corresponding rendered frame.
As for playout delay, it is the time required for the client to
decode and display the encoded frame on the screen of the
local machine. Because playout delay is usually constant and
not affected by the cloud side, we do not include it in our
model for brevity. Thus, we redefine the interaction delay of
a user i as the sum of processing delay Dt

p(i) and network
delay Dt

n(i), which can be represented as below

Dt (i) = Dt
p(i) + Dt

n(i). (2)

Processing delay is determined jointly by the game genre,
the VM configuration and the allocated bitrate, while network
delay is mainly determined by the network condition between
the user and the data center. To ease our presentation,
we define Y t (i, k) to indicate whether a user i is redirected to
the kth data center and Zt (i, d) to indicate whether a user i
is allocated with the dth type VM at time slot t , respectively

Y t (i, k) = 1{user i is redirected to the kth data center}
Zt (i, d) = 1{user i is allocated with the dth type VM}.
Then, we can derive the processing delay and the network

delay of a user i as follows:

Dt
p(i) =

M∑

j=1

D∑

d=1

D̃t
p(G(i), B( j), d) · Xt (i, j) · Zt (i, d)

Dt
n(i) =

K∑

k=1

D̃t
n(i, k) · Y t (i, k)

where D̃t
p(G(i), B( j), d) is the average processing delay for

a user i when the assigned bitrate is B( j) and the allocated
VM is d-type, while D̃t

n(i, k) is the average network delay
between a user i and a data center k at time slot t .

C. User Utility Model

For users who are playing games in the same or similar
categories, we assume that they have a similar utility function.
In cloud gaming, if the delay constraint can be satisfied, the
utility of a game player is largely determined by the game
genre and the allocated video bitrate. Therefore, suppose that
the delay constraint can be met, we define the utility function

of a user i allocated with a bitrate B( j) as φ(G(i), B( j)),
where G(i) is the index of the group that a user i belongs to.
φ(·) is usually a concave function of the allocated bitrate B( j).
Therefore, in each time slot t , the utility of a user i can be
defined as

�t (i) =
M∑

j=1

Xt (i, j) · φ(G(i), B( j)). (3)

Let Ut be the set of users in the system at the beginning
of time slot t . The overall utility of all users in the system at
time slot t can be derived as

�t =
∑

i∈U t

�t (i). (4)

D. Service Cost Model

For geo-distributed data centers, the bandwidth price varies
across different regions. In time slot t , let v t

k and wt
k be the

unit bandwidth price and the amount of export bandwidth
usage in the kth data center, respectively. Assume that the
bandwidth price keeps constant within a time slot. Consider
all data centers, the total bandwidth cost at time slot t can be
given by

Ct
b =

K∑

k=1

v t
kw

t
k

where wt
k = ∑

i∈U t
∑M

j=1 Xt (i, j) · Y t (i, k) · B( j). The above
expression can also be rewritten as

Ct
b =

∑

i∈U t

Ct
b(i)

where Ct
b(i) is the bandwidth cost incurred by a user i and

Ct
b(i) =

M∑

j=1

K∑

k=1

Xt (i, j)Y t(i, k)B( j)v t
k .

In addition to the bandwidth cost, there also exists rental
cost for each VM allocated to users. The CGSP should pay
for the VMs rented from the cloud infrastructure provider.
The VM rental fee is used to cover the cost incurred by
electricity usage, machine maintenance and depreciation, and
so on. Note that, in our system model, the CGSPs rent VMs
from the cloud service providers (CSPs) to deliver cloud
gaming services. According to the current pricing model
(e.g., Amazon EC2), as a customer of CSPs, the CGSP
only needs to pay for the VM rental cost. The additional
cost incurred by VM reconfiguration should not be paid by
the CGSP. In addition, it is also not necessary for a CGSP
to take care of implementation details of the underlying
physical cloud infrastructure (e.g., VM migration and
VM consolidation), which are the responsibilities of the CSP.
With the advance of virtualization techniques [28]–[30],
seamless VM migration can be achieved for the cloud gaming
service and the impact of VM migration to user QoE will not
be a serious problem. In our system model, we consider a
scenario that the CSP can support seamless or near-seamless
VM migration.
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As the rental cost is closely related to the VM configuration,
we define the VM rental cost Ct

o(i) incurred by a user i in
time slot t as

Ct
o(i) =

K∑

k=1

D∑

d=1

cdk · Y t (i, k) · Zt (i, d)

where cdk is the rental cost of the d-type VM in the kth data
center in one time slot. Thus, the overall rental cost of all
users in time slot t can be represented as

Ct
o =

∑

i∈U t

Ct
o(i).

For a CGSP, the service cost includes both bandwidth cost
and VM rental cost. Thus, we can derive the total service cost
in time slot t as

Ct = Ct
b + Ct

o.

E. Problem Formulation

For a CGSP, it is critical to minimize the cost of service
delivery and increase the revenue in the meanwhile. Therefore,
our objective in this paper is to design cost-efficient cloud
resource allocation and bitrate adaptation algorithms while
still respecting the QoE requirement of each user. To this
purpose, we formulate the problem into the following
stochastic optimization problem:

P1. min lim
T →∞

1

T

T −1∑

t=0

(Ct − α · �t )

s.t.
M∑

j=1

Xt (i, j) = 1, Xt (i, j) ∈ {0, 1} ∀i (a)

K∑

k=1

Y t (i, k) = 1, Y t (i, k) ∈ {0, 1} ∀i (b)

D∑

d=1

Zt (i, d) = 1, Zt (i, d) ∈ {0, 1} ∀i (c)

M∑

j=1

B( j) · Xt (i, j) ≥ A(G(i)) ∀i (d)

lim
T →∞

1

T

T −1∑

t=0

1

Nt
l

∑

i∈U t
l

Dt (i) ≤ εl ∀l. (e)

In the above problem, the objective function contains
two components. One is the long-term time-average service
cost incurred by bandwidth usage and VM rental, which
should be minimized as much as possible. The other is the total
utility of all users, which should be maximized to improve
user engagement on game playing. These two objective
components are conflicting with each other. To optimize
two conflicting objective components simultaneously,
it is a common optimization technique to combine
them into one weighted objective function. The tradeoff
between two objective components can be tuned by the
weight α.

The first three constraints [i.e., constraints (a), (b), and (c)]
ensure that a unique bitrate, data center, and VM configuration
must be selected for a particular user at the beginning of each
time slot. The constraint (d) is used to ensure that the allocated
bitrate should be no less than the basic bitrate for each
user, so that users can enjoy a fluent game experience. The
last constraint (e) guarantees that the time-average interaction
delay of users in each group should be less than a predefined
threshold (e.g., 100 ms). Intuitively, different game categories
have different delay and QoE requirements. For each group of
users, we define the threshold as εl , where l is the group index,
and the group size is Nt

l at time slot t . When the interaction
delay of a user is under a certain threshold, which is enough to
ensure good user experience, a further reduction of interaction
delay brings marginal benefit to a user. In this case, the CGSP
cares more about the minimization of service cost in running
the service.

The value of α represents the relative importance between
service cost and user utility. The service provider can configure
the value of α based on its bias on these two objective
components. However, even if we put too much weight on
the service cost, the user utility will only be moderately
impacted, instead of being too lousy. In our problem formu-
lation, we need to ensure the constraints (d) and (e) when
optimizing the objective function. By satisfying the constraints
during optimization, we can guarantee to meet a user’s basic
requirements on bandwidth and latency, which is essential for
a user to have a basic gaming experience. When we increase
the weight on the user utility, a much better gaming experience
can be achieved. The decision of the optimal α value depends
on the bias of a CGSP, which is pretty subjective and beyond
the scope of this paper.

IV. DESIGN OF ONLINE ALGORITHM

To solve the constrained stochastic optimization
problem P1, we exploit the Lyapunov optimization theory [8]
to design online control strategies for cloud resource
allocation and video bitrate adaptation. A major benefit of
Lyapunov optimization is that it does not require any priori
knowledge about user behaviors and network conditions.
By taking actions to greedily minimize the drift-plus-penalty
in each time slot, it can provide provable performance with
explicit bounds. Other approaches (e.g., Markov processes)
can also be used to solve this problem, but these approaches
need some priori knowledge about user behaviors and network
conditions.

In the framework of Lyapunov optimization, the original
stochastic optimization problem can be transformed into an
optimization problem of minimizing the Lyapunov drift-
plus-penalty. Using Lyapunov optimization, the time average
constraints in Problem P1 can be transformed into a set of
queue stability constraints [8]. In this paper, we will redefine
the virtual queues in the context of adaptive cloud gaming
and prove that delay constraints in the original optimization
problem can be transformed into a set of queue stability
problems.

A set of virtual queues H = {H1, H2, . . . , HL} are
introduced for problem solving. Hl denotes the virtual
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QoE queue of the lth user group and Hl(t) denotes the queue
backlogs in the lth user group at time slot t . The update of
the queue Hl is described as

Hl(t + 1) = max

⎧
⎨

⎩Hl(t) + 1

Nt
l

∑

i∈ U t
l

Dt (i) − εl , 0

⎫
⎬

⎭.

In Lemma 1, we can prove that the delay constraint (e) can
be satisfied if the virtual queue Hl is stable.

Lemma 1: If the virtual queue Hl is stable, then the delay
constraint (e) can be satisfied

lim
T →∞

Hl(t)

t
= 0 ⇒ lim

T →∞
1

T

T −1∑

t=0

1

Nt
l

∑

i∈U t
l

Dt (i) ≤ εl .

Proof: See [9, Appendix A] for the proof details.
Define the Lyapunov function as L(t) = (1/2)

∑L
l=1 H 2

l (t)
and Lyapunov drift as �(H(t)) = L(t + 1) − L(t). According
to the Lyapunov optimization framework, we can then obtain
the drift-plus-penalty by adding the cost into the drift, namely

�(H(t)) + V E
{
Ct

b + Ct
o − α�t |H(t)

}

where H(t) = {H1(t), H2(t), . . . , HL(t)}, and V is a tunable
parameter that affects the performance of the online algorithm.
Therefore, the solution of the original stochastic optimization
problem can be approximately obtained by solving the prob-
lem of minimizing the drift-plus-penalty in each time slot.
That is, P1 can be transformed into the following optimization
problem P2:

P2. min �(H(t)) + V E
{
Ct

b + Ct
o − α�t |H(t)

}

s.t. (a)(b)(c)(d).

To solve Problem P2, we should first derive the upper bound
of the drift-plus-penalty, denoted by �1. The upper bound �1
can be derived in the following lemma.

Lemma 2: For any feasible Xt, Y t, and Zt, the
drift-plus-penalty is upper bounded by �1, namely

�(H(t)) + V E
{
Ct

b + Ct
o − α�t |H(t)

} ≤ �1

where �1 = V E{Ct
b +Ct

o −α�t |H(t)}+E{∑L
l=1 Hl(t)(1/Nt

l )∑
i∈U t

l
Dt (i)|H(t)}+(L D2

max + ∑L
l=1 ε2

l /2). Here, we assume

that Dt (i) is an increasing and convex function, and
upper bounded by Dmax, i.e., Dt (i) ≤ Dmax,∀i .

Proof: See [9, Appendix B] for the proof details.
Rather than directly minimizing the drift-plus-penalty, our

strategy actually seeks to minimize the upper bound �1.
Here, we combine �1 with the definition of Ct

b, Ct
o, and �t .

Therefore, we get the optimization problem P3

P3. min
∑

i∈U t

(
HG(i)(t)

Nt
G(i)

Dt (i) + V Ct
b(i) + V Ct

o(i) − V α�t (i)

)

s.t. (a)(b)(c)(d).

Note the decision vector associated with a user i at
time slot t as Si (t) = (Xt (i, j), 1 ≤ j ≤ M, Y t (i, k),
1 ≤ k ≤ K , Zt (i, d), 1 ≤ d ≤ D), and the set of all decisions
is represented by Si (t) = (Si (t)|(a)(b)(c)(d)), where the

Algorithm 1 One-Shot Algorithm
Input:

The value of L, M, K , V , α
Decision set Si (t)
Number of users in each group Nt

l
Utility function for users in each group φ(l, j)
Processing delay and network delay D̃t

p(G(i), B( j), d),

D̃t
n(i, k)

Delay that users in each group can tolerate εl

Bandwidth price of each data center v t
k

Rental cost of each VM configuration cdk

Output:
User decision S∗

i (t),∀i ∈ Ut

1: Initialization step:
x(Si (t)) = 0,∀i ∈ Ut ,∀Si (t) ∈ Si (t),

2: for ∀i ∈ Ut do
3: S∗

i (t) = arg maxSi (t)∈Si(t) ũi (Si (t));
4: end for

constraints (a), (b), (c), and (d) are given in Problem P1.
Each user can be assigned with only one decision Si (t) from
the set Si (t) at each time slot.

Define x(Si (t)) as an indicator function to indicate
whether a user i is assigned with the decision Si (t), thus
x(Si (t)) ∈ {0, 1}. Then, we can transform the
constraints (a), (b), (c), and (d) in the optimization
problem P3 to a simple constraint as

∑

Si (t)∈Si (t)

x(Si (t)) = 1 ∀i ∈ Ut .

Here, we denote ũi (Si (t)) = −((HG(i)(t)/Nt
G(i))Dt (i) +

V Ct
b(i) + V Ct

o(i) − V α�t (i)). Therefore, we can further
simplify the representation of Problem P3 as follows:

P4. max
∑

i∈U t

∑

Si (t)∈Si(t)

ũi (Si (t)) · x(Si (t))

s.t.
∑

Si (t)∈Si (t)

x(Si (t)) = 1 ∀i ∈ Ut

x(Si (t)) ∈ {0, 1} ∀i ∈ Ut ∀Si (t) ∈ Si (t).

Thus, the original complex optimization problem can be
transformed into a simple optimization problem. We design
an one-shot algorithm (as shown in Algorithm 1) to solve
Problem P4, which obtains the optimal result for P4 and
significantly reduces the computational complexity.

In the second line of Algorithm 1, we can see that we
need to iterate over the decision Si (t) ∈ Si (t) of each
user i to find the best decision vector that maximizes the
value of ũi (Si (t)). From the definition of Si (t), it is easy to
verify that the maximal size of decision set Si (t) is at most
MKD. Thus, the computational complexity for executing the
iterations is O(MKDN) by even using a brutal search method.
It also indicates that our proposed algorithm is a polynomial-
time algorithm and its computational complexity is irrelevant
to the value of V .

After utilizing the Lyapunov optimization theory, the
selection of user decisions can be realized by solving the
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Algorithm 2 Online Resource Allocation Algorithm
Input:

The value of L, M, K , V , α
Decision set Si (t)
Number of users in each group Nt

l
Utility function for users in each group φ(l, j)
Processing delay and network delay D̃t

p(G(i), B( j), d),

D̃t
n(i, k)

Delay that users in each group can tolerate εl

Bandwidth price of each data center v t
k

Rental cost of each VM configuration cdk

Output:
User decision S∗

i (t),∀i ∈ Ut , t
Bitrate selection, datacenter selection and VM config-
uration variables Xt (i, j), Y t (i, k), Zt (i, d),∀i ∈ Ut , t ,
1 ≤ j ≤ M, 1 ≤ k ≤ K , 1 ≤ d ≤ D

1: Initialization step: Let t = 0, and set Hl(0) = 0,
for l = 1, 2, . . . , L

2: while the cloud gaming service is running do
3: At the beginning of time slot t , monitor the queue

backlog Hl(t) and the real-time information of bandwidth
price v t

k ;
4: Update information of the set of all game users Ut,

users of each group Ut
l , and the amount of users in each

group Nt
i . In addition, update network delay between

each user and data center D̃n(i, k);
5: Calculate the user decisions {S∗

i (t),∀i ∈ Ut } according
to Algorithm 1;

6: Derive the strategy of bitrate selection, data center
selection and VM configuration selection {Xt (i, j),
∀i ∈ Ut , 1 ≤ j ≤ M}, {Y t (i, k),∀i ∈ Ut , 1 ≤ k ≤ K },
{Zt (i, d),∀i ∈ Ut , 1 ≤ d ≤ D} according to user
decisions {S∗

i (t),∀i ∈ Ut };
7: Update virtual queues H according to Hl(t + 1) =

max {Hl(t) + 1
Nt

l

∑
i∈U t

l
Dt (i) − εl , 0},∀1 ≤ l ≤ L;

8: Set t + 1 → tF.
9: end while

one-shot problem P4 at each time slot. The details of our
online algorithm for cloud resource allocation are given
in Algorithm 2. The working process of Algorithm 2 can also
be illustrated in Fig. 2. Our online algorithm can approach the
optimal solution of the origin optimization problem within
infinitely small distance. The distance to the optimality is
determined by the tuning parameter V . We can obtain the
performance bound with the following theorem.

Theorem 1: The performance bound of the time-average
weighted value of service cost and user utility induced by our
online algorithm (by solving Problem P2) can be given by

lim
T →∞

1

T

T −1∑

t=0

(
Ct

b + Ct
o − �t ) ≤ P̂ + 	

V

where P̂ denotes the infimum value of objective
function in Problem P1 over all stable policies, and
	 = (L D2

max + ∑L
l=1 ε2

l /2).

Fig. 2. Illustration of the working process of our online algorithm.
The algorithm is running on the portal server and makes adjustments on
datacenter selection, VM allocation, and bitrate selection periodically.

Proof: See [9, Appendix C] for the proof details.
The tunable parameter V determines the approximation

extent of our algorithm to the optimality, and also the tradeoff
between the overall cost and the interaction delay experienced
by users. With a larger value of V , our algorithm performs
close to the optimal value, but it is at the cost of a larger
virtual queue length, which implies that game players will
experience a larger interaction delay and results in a negative
effect on the user experience.

V. EVALUATIONS

In this section, we developed a discrete-event simulator to
simulate the behavior of a CGSP under different decision
strategies, and conducted a set of experiments to evaluate the
effectiveness of our proposed online algorithm.

A. Simulation Setup

In our simulation, we consider a scenario in which a
CGSP deploys its service in five geo-distributed data centers.
To make our simulation more realistic, we use the real dataset
on network delay among Internet nodes obtained from the
Meridian Project [31], [32]. To take the dynamics of network
delay into account, when using the Meridian real trace on
network delay, we added a variance of 10% to network delay
between nodes and varied the value in each time slot. In the
simulation, we configure the bandwidth of each user higher
than the basic bitrate requested by a user and also allow the
variation of network bandwidth. In each time slot, we assume
the arrival of game players follows the Poisson distribution
with the mean value of 500.

Each data center can offer three different types of
VM instances. The rental cost of different VM instances
is set based on Amazon EC2’s pricing model. We use the
real VM pricing trace obtained from Amazon’s Website [33].
According to the trace, we set the price of three types of
VM instances as 0.07, 0.14, and 0.28 (in units of dollars
per hour), respectively. In Amazon’s pricing model, the price
of bandwidth usage varies with time. In our experiments,
we assume that the bandwidth price takes values from the
range [0.05, 0.07] (in units of dollars per gigabyte) and
changes over time. We also assume that the bandwidth price
at each data center is independent and identically distributed.
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The CGSP can scale up or down the number of VM instances
and bandwidth provisioned in each data center.

Assume that there are totally five different game categories
in the system for simplicity. According to the studies
in [34]–[36], users who are playing games in different
categories have different tolerance degrees on interaction
delay. For example, it is observed that players of FPS games
demand for less than 100 ms interaction delay, while 500 ms
interaction delay is good enough for role-playing games [34].
Thus, we set the predefined threshold of interaction delay
for the five game categories as 100, 200, 300, 400, 500 ms,
respectively. Moreover, games in different categories have
different requirements on the video bitrate to ensure a
good game experience. Therefore, we assume that the basic
bitrate of each game category follows a uniform distribution
in [4, 5], [3, 4], [2, 3], [1, 2], and [0.5, 1] Mbits/s, respectively.
In our simulation, each user randomly chooses a game from
five different game categories, and the gaming session length
of each user is simulated as a Weibull distribution according
to the measurement work in [37] and [38]. The Weibull
distribution contains two parameters: 1) the shape, k > 0 and
2) the scale, λ > 0. According to [37], we set the values of
these two parameters as λ = 137 and k = 0.93. Note that, in
real life, the derivation of game-specific parameters requires
some additional effects of CGSPs. Most of parameters can
be derived by performing direct measurements or analyzing
the history data of system operation. For some QoE-related
parameters, CGSPs can collect feedbacks from a sample set
of game players at the end of each game session and use
statistical techniques to derive the parameters.

The processing delay of each game in the cloud platform
is set based on the measurement work in [26] and [39]. The
processing delay is determined by three factors, namely, game
category, video bitrate, and VM configuration. For games
in the same category, the processing delay decreases if a
more powerful VM is allocated to the user. Games with
high interactivity and gorgeous graphic effects incur a higher
processing delay for frame rendering. Moreover, a higher
processing delay will be incurred if encoding game scenes
into a higher bitrate video stream. In the trace, the processing
delay is generally in the range of [30, 200] ms. In our paper,
we consider interaction delay as the sum of network delay and
processing delay, because playout delay is usually constant and
will not be affected by the strategy we made. In our simulation,
we set playout delay to 15 ms according to [39].

The user experience is affected by multiple system factors,
such as the video bitrate, game category, and so on. Similar
to the QoE model in [20], we define the utility function φ(·)
as a logarithmic function of the allocated video bitrate and the
game category, namely

φ(G(i), B( j)) = log

⎛
⎜⎝1 +

∑M

j=1
B( j)Xt (i, j)

A(G(i))

⎞
⎟⎠

where A(G(i))) is the basic bitrate required by a user i , and∑M
j=1 B( j)Xt(i, j) is the actual bitrate assigned for a user i .

In the above definition, the utility received by the user

increases concavely with the increase of the ratio between the
actual streaming bitrate and the basic bitrate. The intuition
behind such a definition is to ensure that the marginal benefit
brought by increasing the video bitrate will be diminished
when the video bitrate is high. The further increase of
video bitrate will not generate significant improvement
of user QoE.

Our proposed CACG algorithm can help the service
provider adjust the selection of data center, video bitrate and
the VM allocation for each user periodically according to his
game genre and delay requirements. In the simulation, our
algorithm adjusts the decision vector for each game player
every 20 min. Note that our algorithm is only intended to
optimize the overall resource provisioning periodically. For
newly arrived users, we use the DDCS + MBS method
(described later) to handle the incoming user requests
timely.

We compare our proposed CACG algorithm with four other
alternatives, each of which is a combination of a data center
selection strategy and a bitrate selection strategy. For four
other alternatives (excluding CACG), we assume that the
system always assigns the user with the lowest VM config-
uration that is powerful enough to ensure the user’s latency
requirement. If the delay constraint is violated even with the
best VM configuration, the system will assign the user with
the best VM configuration.

In our simulation, we consider the following two typical
data center selection strategies.

1) Delay-Sensitive Data Center Selection (DDCS): In
which user requests are always routed to a data center
with the lowest network delay (for example, a data center
is in a nearby region). It can reduce the interaction delay
for a user.

2) Load-Sensitive Data Center Selection (LDCS): In which
users are always routed to a data center with the lowest
workload level. It can help to achieve load balancing
among multiple data centers.

Two bitrate selection strategies are used for comparison in
our experiments.

1) Minimum Bitrate Selection (MBS): In which users are
always assigned with a bitrate that is equal to or just
above their basic bitrate according to the game they
play. In this case, the CGSP can satisfy the user’s basic
QoE requirement and minimize their bandwidth cost to
support the cloud gaming service.

2) Enhanced Bitrate Selection (EBS): In which users care
more about their gaming experience and wish to get a
higher bitrate to guarantee their QoE. In our simulation,
the CGSP will allocate a bitrate that is one level higher
than the bitrate set by the MBS method. Thus, the
service provider can offer a better gaming experience
to users and attract more new game players to join.
However, it is at the expense of higher bandwidth and
rental cost.

Therefore, we have five methods in comparison, namely:
1) DDCS + MBS; 2) DDCS + EBS; 3) LDCS + MBS;
4) LDCS + EBS; and 5) our proposed CACG algorithm.
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Fig. 3. Comparison of service cost. (a) Total service cost. (b) Bandwidth
cost. (c) VM rental cost.

B. Comparison of Service Cost

Fig. 3(a) shows the total service cost incurred by different
methods during the simulation periods. Our simulation
lasts for 2000 min. From the figure, we can find that
LDCS + EBS incurs the highest service cost, and our proposed
CACG has the lowest service cost. The curve of CACG is
close to the optimal value with very small distance. More
accurately, our method can reduce 48% of service cost com-
pared with LDCS + EBS, 40% of service cost compared with
DDCS + EBS and LDCS + MBS, and 25% of service cost
compared with DDCS + MBS.

Fig. 4. Comparison of user utility.

In our paper, service cost includes two parts, bandwidth
cost and VM rental cost. The comparison of bandwidth cost
is shown in Fig. 3(b). We can observe that the bandwidth cost
of DDCS + MBS and LDCS + MBS is the same and also the
lowest among different methods. Bandwidth cost is determined
by the bandwidth price and bandwidth consumption in each
data center. As DDCS + MBS and LDCS + MBS always
select the minimum bitrate that is just above the basic bitrate
requirement, thus these two methods can achieve the lowest
bandwidth cost. Our proposed CACG achieves a rather low
bandwidth cost, which is close to the minimum value.

Fig. 3(c) further shows the VM rental cost incurred by
different methods. Our proposed CACG can significantly
reduce the VM rental cost compared with other methods.
LDCS + EBS has the highest rental cost, as the selection of
data centers is ignorant of latency, thus it results in higher
network delay for each user. Besides, the method chooses an
enhanced bitrate to encode the game scenes. To ensure the
latency constraint, a more powerful VM should be allocated
to reduce the processing delay.

C. Comparison of User Utility

Fig. 4 plots the comparison of user utility among different
methods during our simulation. DDCS + MBS and
LDCS + MBS have the lowest user utility, as both of them
select the minimum bitrate for each user that is just above
the basic bitrate requirement, which can only ensure a basic
game experience. The methods using the EBS strategy achieve
much better utility, because an enhanced bitrate will be chosen
for each user so as to offer a much better game experience.
Among all the methods, our proposed CACG achieves a much
achieves a much higher utility value than that of DDCS + MBS
and LDCS + MBS, and approaches the utility value of
DDCS + EBS and LDCS + EBS with a small distance.
However, the cost incurred by CACG is significantly lower
than DDCS + EBS and LDCS + EBS as shown in the previous
part.

Fig. 5 shows the average utility of users in different groups
achieved by our CACG algorithm. In our simulation settings,
different user groups have different QoE requirements, but
users in the same group have similar QoE requirements. A user
with a larger group index has a higher QoE requirement in
terms of interaction delay and video bitrate. The results in the
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Fig. 5. Average utility of users in different groups achieved by
CACG algorithm.

Fig. 6. Comparison of gaming latency. (a) Interaction delay. (b) Network
delay.

figure show that users in different groups have very similar
utility values under our CACG algorithm. It indicates that
our proposed algorithm can guarantee a rather high level of
fairness among users.

D. Comparison of Gaming Latency

Fig. 6 shows the comparison of gaming latency among
different methods. From the results in Fig. 6(a), we can
observe that our proposed CACG algorithm can reduce
the interaction delay significantly. For 75% of users, their
interaction delay is under 150 ms, and it is good enough

Fig. 7. Distribution of the number of VM migrations experienced by a user
per hour.

to ensure a fluid game experience. In our formulation, we
consider the interaction delay as a constraint that should
be less than a threshold for each user. Obviously, when
the delay constraint is satisfied and low enough to ensure
good user experience, a further reduction of interaction delay
brings marginal benefit to users. Thus, CACG does not try to
minimize the interaction delay as much as possible.

Among the five methods, DDCS + MBS performs the best
due to the fact that it always routes user requests to the
data center with the lowest network delay, and it also selects
the bitrate that is just above the basic bitrate for each user,
which helps to reduce the processing delay. The method
DDCS + MBS has the worst performance, as it does not
consider the network delay when redirecting each user to data
centers. In addition, it chooses an enhanced bitrate for each
user to ensure better QoE, which results in a much higher
processing delay. With our CACG method, the variance of
interaction delay can also be reduced significantly, and most
outliers are caused by the nodes with bad network condition
in the Meridian data set.

Fig. 6(b) plots the network delay incurred by different
methods. For each user, the network delay is only related to the
assigned data center. Thus, DDCS + MBS and DDCS + EBS
perform the best, as both of them route users to the data center
with the lowest network delay. In comparison, LDCS + MBS
and LDCS + EBS have a much higher network delay. Our
proposed CACG method can achieve a very low network
delay, which approaches DDCS + MBS and DDCS + EBS
with very small distance (normally with an increase of
only 0–10 ms).

E. Impact of VM Migrations

As we all know, migration between data centers and
VMs will possibly cause QoE degradation of game players.
However, such migration cannot be completely avoided due
to link congestion or system overload. In such cases, users
will prefer to be migrated to another data center or VM
with tolerable QoE degradation. To examine the impact of
VM migrations incurred by our algorithm, we conduct some
extra experiments to study the impact of VM migrations.

Fig. 7 depicts the distribution of the number of VM migra-
tions experienced by a user per hour. Users with a larger group
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Fig. 8. Impact of the parameter α. (a) Mean service cost under various values of the parameter α. (b) Mean user utility under various values of the
parameter α.

index have a higher QoE requirements on gaming latency and
streaming bitrate. From Fig. 7, we can observe that users with
a higher group index experience less VM migrations per hour,
which means users who have a higher QoE requirement
experience less VM migrations to guarantee their gaming
quality. For users in Group 1, 2, and 3, the median number
of VM migrations experienced per hour is about 1.3, while
the median number of VM migrations experienced by users
in Group 5 is close to zero. The reason why users with
a smaller group index experience a little larger number of
VM migrations is to cut down the service cost with tolerable
QoE degradation.

F. Impact of Tunable Parameters
The value of α determines the tradeoff between user utility

and service cost. To examine the impacts of different values of
α, we conducted further experiments with various values of α.
From Fig. 8, we can observe that, when the value of
α increases from 0 to 1, the mean user utility and service cost
both increase. With a higher value of α, the gaming experience
of users can be improved. In the meanwhile, as a penalty,
the service cost also increases due to the increasing resource
requirements of QoE. When the value of α is higher than 0.3,
the impact of α trends to be stable. Besides, we also observed
that, with the increase of the parameter V , we can get a higher
mean user utility and a lower mean service cost. However,
it is at the cost of a much higher interaction delay for
users.

Fig. 9 shows the scatter plot for the mean user utility and
service cost under various values of the parameter α. Each
point in the figure indicates a pair of the mean user utility and
the mean service cost under a particular value of α. We can
observe that the points mainly cluster in a few small regions,
as the impact of α trends to be stable when the value of α
is higher than 0.3. And it is easy to see that, by selecting a
larger value of V , we can achieve a much smaller service cost
and a much larger user utility, but a larger value of V may
result in a higher interaction delay.

Fig. 10 depicts the impacts of the parameter V on the
mean service cost and user utility. V is a tunable parameter

Fig. 9. Scatter plot of mean user utility and service cost under various values
of the parameter α.

that determines the tradeoff between interaction delay and
penalty cost. Penalty cost is defined as the subtraction of
the service cost and the weighted user utility. With a larger
value of V , we can further approach the infimum of penalty
cost, which means a much lower service cost and a higher
user utility. In Fig. 10, when the value of V increases from
100 to 105, the mean service cost decreases a lot with a small
increase of the mean user utility. However, we should not
choose a very large value of V radically, as a very large value
of V will significantly increase the interaction delay. Besides,
a larger value of α indicates better gaming experience with a
larger mean user utility. In the meanwhile, as a penalty, the
service cost also increases to ensure the improvement
of QoE.

In Fig. 11, we present the scatter plot for the mean user
utility and the mean service cost under various values of
the parameter V . Each point in the figure corresponds to
a pair of the mean user utility and the mean service cost
under a particular value of V . We can observe that the mean
service cost spreads over a large region, while the mean user
utility does not change much under different values of V.
We can achieve better gaming quality with a larger value of
the parameter α, which is at the cost of a larger mean service
cost.
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Fig. 10. Impact of the parameter V . (a) Mean service cost under various values of the parameter V . (b) Mean user utility under various values of the
parameter V .

Fig. 11. Scatter plot of mean user utility and service cost under various
values of the parameter V .

VI. CONCLUSION

In this paper, we investigated the problem of delivering
CACG services. We designed an intelligent online allocation
strategy called CACG to achieve adaptive cloud resource
allocation in cloud gaming. Our objective is to minimize
the service cost for cloud game service providers, while still
ensuring good-enough QoE for game players. We formulated
the problem as a constrained stochastic optimization problem,
and exploited the Lyapunov optimization theory to derive
the online strategy. Our proposed algorithm approaches the
optimality with an explicitly provable performance upper
bound. We also conducted extensive simulations with real
traces, and our results show that the proposed algorithm can
cut down at least 25% of service cost, while ensuring even
better QoE for game players. In the next step, we plan to
integrate our algorithm with the real cloud gaming system
(e.g., GamingAnywhere) and further explore the impact
of other system factors (e.g., gamer behavior) on resource
provisioning.
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